高中數(shù)學(xué)的解題方法
發(fā)布時(shí)間:2023-02-24 16:01:22 已幫助:人 來(lái)源:重慶渝誠(chéng)優(yōu)才
對(duì)于很多對(duì)高中數(shù)學(xué)題型適應(yīng)不了的同學(xué),提升自己的數(shù)學(xué)成績(jī)這個(gè)目標(biāo),總是那么的遙不可及。其實(shí)是大家沒(méi)有找對(duì)解題方法,為了幫助大家,小編來(lái)跟大家來(lái)說(shuō)道一下相關(guān)的解題方法。
[直線過(guò)焦點(diǎn)],必有ecosA=(x-1)/(x+1),其中A為直線與焦點(diǎn)所在軸夾角,是銳角。x為分離比,必須大于1。
注:上述公式適合一切圓錐曲線。如果焦點(diǎn)內(nèi)分(指的是焦點(diǎn)在所截線段上),用該公式;如果外分(焦點(diǎn)在所截線段延長(zhǎng)線上),右邊為(x+1)/(x-1),其他不變。
2.函數(shù)的周期性問(wèn)題(記憶三個(gè))
(1)若f(x)=-f(x+k),則T=2k;
(2)若f(x)=m/(x+k)(m不為0),則T=2k;
(3)若f(x)=f(x+k)+f(x-k),則T=6k。
注意點(diǎn):a.周期函數(shù),周期必?zé)o限b.周期函數(shù)未必存在最小周期,如:常數(shù)函數(shù)。c.周期函數(shù)加周期函數(shù)未必是周期函數(shù),如:y=sinxy=sin派x相加不是周期函數(shù)。
3.關(guān)于對(duì)稱問(wèn)題(無(wú)數(shù)人搞不懂的問(wèn)題)總結(jié)如下
(1)若在R上(下同)滿足:f(a+x)=f(b-x)恒成立,對(duì)稱軸為x=(a+b)/2
(2)函數(shù)y=f(a+x)與y=f(b-x)的圖像關(guān)于x=(b-a)/2對(duì)稱;
(3)若f(a+x)+f(a-x)=2b,則f(x)圖像關(guān)于(a,b)中心對(duì)稱
4.函數(shù)奇偶性
(1)對(duì)于屬于R上的奇函數(shù)有f(0)=0;
(2)對(duì)于含參函數(shù),奇函數(shù)沒(méi)有偶次方項(xiàng),偶函數(shù)沒(méi)有奇次方項(xiàng)
(3)奇偶性作用不大,一般用于選擇填空
5.數(shù)列爆強(qiáng)定律
(1)等差數(shù)列中:S奇=na中,例如S13=13a7(13和7為下角標(biāo));
(2)等差數(shù)列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差
(3)等比數(shù)列中,上述2中各項(xiàng)在公比不為負(fù)一時(shí)成等比,在q=-1時(shí),未必成立
(4)等比數(shù)列爆強(qiáng)公式:S(n+m)=S(m)+q2mS(n)可以迅速求q
6.數(shù)列的終極利器,特征根方程
首先介紹公式:對(duì)于an+1=pan+q(n+1為下角標(biāo),n為下角標(biāo)),
a1已知,那么特征根x=q/(1-p),則數(shù)列通項(xiàng)公式為an=(a1-x)p2(n-1)+x,這是一階特征根方程的運(yùn)用。
二階有點(diǎn)麻煩,且不常用。所以不贅述。希望同學(xué)們牢記上述公式。當(dāng)然這種類(lèi)型的數(shù)列可以構(gòu)造(兩邊同時(shí)加數(shù))
7.函數(shù)詳解補(bǔ)充
1、復(fù)合函數(shù)奇偶性:內(nèi)偶則偶,內(nèi)奇同外
2、復(fù)合函數(shù)單調(diào)性:同增異減
3、重點(diǎn)知識(shí)關(guān)于三次函數(shù):恐怕沒(méi)有多少人知道三次函數(shù)曲線其實(shí)是中心對(duì)稱圖形。
它有一個(gè)對(duì)稱中心,求法為二階導(dǎo)后導(dǎo)數(shù)為0,根x即為中心橫坐標(biāo),縱坐標(biāo)可以用x帶入原函數(shù)界定。另外,必有唯一一條過(guò)該中心的直線與兩旁相切。
8.常用數(shù)列bn=n×(22n)求和Sn=(n-1)×(22(n+1))+2記憶方法
前面減去一個(gè)1,后面加一個(gè),再整體加一個(gè)2